Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function
نویسندگان
چکیده
Programmable logic controllers are the main controllers in the today’s industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented. Keywords—Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.
منابع مشابه
Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملImplementation of a programmable neuron in CNTFET technology for low-power neural networks
Circuit-level implementation of a novel neuron has been discussed in this article. A low-power Activation Function (AF) circuit is introduced in this paper, which is then combined with a highly linear synapse circuit to form the neuron architecture. Designed in Carbon Nanotube Field-Effect Transistor (CNTFET) technology, the proposed structure consumes low power, which makes it suitable for the...
متن کاملA rule-based evaluation of ladder logic diagram and timed petri nets for programmable logic controllers
This paper describes an evaluation through a case study by measuring a rule-based approach, which proposed for ladder logic diagrams and Petri nets. In the beginning, programmable logic controllers were widely designed by ladder logic diagrams. When complexity and functionality of manufacturing systems increases, developing their software is becoming more difficult. Thus, Petri nets as a high l...
متن کاملA Stochastic Approach to Digital Control Design and Implementation in Power Electronics
This dissertation uses the theory of stochastic arithmetic as a solution for the FPGA implementation of complex control algorithms for power electronics applications. Compared with the traditional digital implementation, the stochastic approach simplifies the computation involved and saves digital resources. The implementation of stochastic arithmetic is also compatible with modern VLSI design ...
متن کاملA generalized ABFT technique using a fault tolerant neural network
In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...
متن کامل